Thank you for your purchase of a Spectra Newport system. Properly installed it will provide years of trouble free service. Please pay attention to the installation instructions and the system layout. Like any piece of mechanical equipment the system will require inspection and service from time to time. Do not place the components in inaccessible areas that will prevent proper maintenance. If you are having a dealer install the system for you, review the location of the components to make sure that the installation will meet your approval upon completion.

Newport Installation Quick Start

Important Details for Installer

1. The system must have a dedicated sea water inlet to guarantee a solid flow of water to the system. The inlet should be as low in the boat as possible and with a scoop type forward facing thru-hull fitting installed.

2. Follow the wire gauge charts in the instructions! Using larger wire than specified is acceptable.

3. The MPC control must have DC power continuously to achieve the full benefits of the fresh water flush system. The domestic fresh water pressure must be on and the fresh water tank level maintained. Calculate 3 gallons (12L) per flush for 400 systems and 5 gallons (20L) for 700 and 1000 systems.

4. The MPC 3000 control must be de-powered (DC power off) after the system is put in storage “pickled” where a storage chemical or antifreeze is run through the system.

5. If you are separating the Clark pump/membrane assembly, please review the high pressure tube assembly instructions. Improper assembly will cause failure!

6. Run test, then “sea trial” the complete system before assuming the system is operational. If the boat is in fresh or dirty water, see “Dry testing the system.”

7. Spectra dealers are responsible for educating the vessel owners on the operation and maintenance of the system. We request that you “walk through” the installation with our customer.

8. Please have the owner fill out the warranty card. The warranty is void if it is not registered.
Table of Contents

Installation

Getting Started	..	4
Newport Schematic	..	6
Installation Basics	..	7
Component Placement	..	8
Plumbing	..	10
Parker Tube Fitting Assembly Procedure	..	15
Wiring	..	16
Membrane Pressure Vessel Relocation	..	46
Z Brane Installation	..	50
MPC Tank Switch Wiring and operation	..	59

Operation

New Systems Start Up and Testing	..	28
Dry Testing	..	31
Normal Start Up Using the Auto Run	..	32
Automatic Fresh Water Flush Cycle	..	33
Emergency Operation	..	34
Maintenance	..	39
MPC Operation Guide	..	52

Service & Maintenance

Long Term Storage Procedures	..	35
Winterizing	..	38
Membrane Cleaning	..	40
Salinity Probe Calibration	..	42
Suggested Spares	..	45
Newport Troubleshooting Procedures	..	48
Getting Started

Unpack the system and inspect it to make sure that it has not been damaged in shipment.

Refer to the shipping list for your system to make sure you have received all of the components listed. Do not discard any packaging until you have found and identified all of the parts. The small installation parts are listed on the cellophane bags’ pick list.

We will not be held responsible for shortages and or freight damage that are not reported within thirty days of the ship date.

Next, study the system layout diagram, component photos and descriptions before beginning your installation. This will assist you in understanding the function of each component.

Layout the system. Before starting the installation identify the location where each module and component will be placed. Insure that there is proper clearance around the components for removal of filters and system service. Also check to make sure you have adequate tubing and hose before starting so additional parts may be ordered. Check to see that the MPC cable is long enough to reach from the display location to the main module.

Newport 400 DC shipping list:

- Newport Feed Pump Module
- High Pressure Clark Pump and Reverse Osmosis Membrane Module
- Newport Fresh Water Flush Module
- Newport Installation Kit 400
- Newport Service Kit
- 5/8” Hose (25’)
- 3/4” Suction Hose (25’)

Newport 400 AC shipping list:

- Newport Feed Pump Module
- High Pressure Clark Pump and Reverse Osmosis Membrane Module
- Newport Fresh Water Flush Module
- Newport Installation Kit 400
- Newport Service Kit
- 5/8” Hose (25’)
- 3/4” Suction Hose (25’)
- 50 Micron Filter Kit
Newport 700 DC shipping list:

- Newport Feed Pump Module
- High Pressure Clark Pump and Reverse Osmosis Membrane Module
- Newport Fresh Water Flush Module
- Newport Installation Kit (k)
- Newport Service Kit
- 1/2” High Pressure Tube (10’)
- 3/8” Low Pressure Tube (15’)
- 5/8” Hose (25’)
- 3/4” Suction Hose (25’)

Newport 700 AC shipping list:

- Newport Feed Pump Module
- High Pressure Clark Pump and Reverse Osmosis Membrane Module
- Newport Fresh Water Flush Module
- Newport Installation Kit (k)
- Newport Service Kit
- 1/2” High Pressure Tube (10’)
- 3/8” Low Pressure Tube (15’)
- 5/8” Hose (25’)
- 3/4” Suction Hose (25’)

Newport 1000 DC shipping list:

- Newport Feed Pump Module
- High Pressure Clark Pump and Reverse Osmosis Membrane Module
- Newport Fresh Water Flush Module
- Newport Installation Kit (k)
- Newport Service Kit
- 1/2” High Pressure Tube (10’)
- 3/8” Low Pressure Tube (15’)
- 5/8” Hose (25’)
- 3/4” Suction Hose (25’)

Newport 1000 AC shipping list:

- Newport Feed Pump Module
- High Pressure Clark Pump and Reverse Osmosis Membrane Module
- Newport Fresh Water Flush Module
- Newport Installation Kit (k)
- Newport Service Kit
- 1/2” High Pressure Tube (10’)
- 3/8” Low Pressure Tube (15’)
- 5/8” Hose (25’)
- 3/4” Suction Hose (25’)
Newport Schematic
DC Versions

Do not cut or splice the MPC control cable; use only factory supplied cable.

If demounting pressure vessel consult HP tube assembly instructions. Pump pressure relief valve must be accessible.

Brine discharge Location not critical

Install pump module as low as possible. Within four feet (1.2M) of the waterline.

Keep inlet piping as short and direct as possible, avoid tight bends and restrictions. Strainer optional.

Install a dedicated 3/4" thru hull with a scoop type strainer. Place the inlet as low as possible with scoop facing forward. Avoid turbulent areas.
Installation Basics

- Read the directions!
- Avoid tight hose bends and excessive runs.
- Use heavy gauge wire.
- Install feed pump as low as possible.
- Use a dedicated thruhull with scoop type strainer.

Thru-hulls

It is mandatory that a dedicated 3/4” to 1” forward facing scoop type intake thru-hull and seacock be installed. Install the intake for the system close to the middle and as far below the waterline as possible. Thru-hulls in the bow area are susceptible to air intake in rough conditions. Sharing a thru-hull with another system is not acceptable and will void the warranty. Sharing a thru-hull can introduce unforeseen problems such as intermittent flow restriction, air bubbles, and contaminates. For racing boats and high speed power boats above 15 knots a retractable snorkel-type thru-hull fitting is preferred to be able to pick up water away from the hull.

Do not install the intake close to or downstream of a head discharge. Install as far below the waterline and as close to center line as possible to avoid contamination and air induction.

The brine discharge through-hull should be mounted above the waterline, in or just above the boot stripe to minimize water lift.

Double clamp all hose connections below the waterline.

Pipe Fitting Instruction

Plastic to plastic fittings should have 3 to 4 wraps of Teflon tape and will thread almost all the way in.

Avoid getting dirt or debris into the piping or hoses during assembly. A small bit of debris can stop the system! Avoid getting tape over the end of fittings that might get into the system. To insure this does not happen, leave the very first thread uncoated.

Avoid restrictions or long runs on the entire inlet side of the plumbing from the thru hull to the main feed pump module.

Prevent tight bends and excessive elbows. Any restrictions will hamper system performance. Secure the piping away from moving objects such as engine belts and hatches. Prevent chafe on the tubing as required. Test and inspect all piping and hose clamps after several hours of operation.

Wiring

- Pay attention to wire size or system performance will be impaired.
- Perform wiring to UL, ABYC, CE or applicable standards.
Component Placement
Refer to the Plumbing Diagrams

Strainer
Mount the strainer in an accessible area close to the intake through the hull that can handle water spillage during service. Extra care during assembly must be taken to avoid air leaks from the strainer. Use the supplied “Quick Block” and wire tie for mounting.

Fresh Water Flush Module
The fresh water flush module should be located between the intake strainer and the feed pump Module and as low as possible in the vessel. It should be mounted with the filter housings vertical and accessible for changing filters. Allow 2” below the filter housing for removal. Do not install over electrical equipment. Remove filter bowls for access to the screw holes in the mounting plate. The unit contains a 50 Micron prefilter, charcoal filter for the flush water, flush solenoid and three way intake service valve.

Optional Z–Brane
The optional Z-Brane Water treatment system is permanently installed in the membrane pressure vessels and continuously helps prevent biogrowth and fouling of the membrane system.

Feed Pump/Main Module
Mount the feed pump/main module on a horizontal or vertical surface that can be up to 4’ above the waterline. It is preferable to mount as low as possible. Locate in an area that allows easy access to filters and a location that will not be a problem when water spills during filter change. Keep future maintenance in mind when choosing a location. The MPC control box can be removed from the main feed pump module and relocated if necessary.
The Clark pump/membrane module comes complete with a mounting system. Be sure to use the supplied washers on the rubber feet. Use it as a template for drilling the mount holes. Mount in any position but leave access to the pressure relief valve on the Clark pump. Install in an area that maintains a temperature below 120F (50C). A cool location is preferable. Keep this unit within the 15’ (4.5M) reach of the wires from main feed pump module. This unit may be placed as high in the boat as you desire. Make sure that the area around and under the pump does not have any water sensitive equipment. Water will be spilled during any repairs or if a leak occurs.

Clark Pump/Membrane Module

The accumulator assembly (400 only) is plumbed between the feed pump module and the Clark pump pressure vessel unit. Plumb as shown with the analog pressure gauge in one port. The pressure is preset at the factory so no adjustment is necessary.

Membrane Pressure Vessel Mounting

The Clark pump and membrane assembly has been pre-assembled at the factory. If it is necessary to disassemble this module and mount the pressure vessel remotely use guidelines in back of the manual. Use only approved tubing for assembly.
Remote Control Panel

The remote control panel can be mounted anywhere that’s dry and convenient. Cut a 4 9/16” (116mm) wide by 2 7/8” (68mm) high opening for the panel. Locate in an area that is easily visible and easy to manipulate the buttons. Use only Spectra approved remote cable. The cable is not standard LAN cable or phone cord.

Plumbing

400 Systems

From the inlet thru hull to flush module and from flush module to pump module inlet use supplied clear 3/4 (19mm) spiral suction rated hose. The outlet of the filter assembly on the main module to the Clark pump assembly is under pressure. Use the supplied braided clear vinyl hose rated to 150 PSI (11 bar). Install the supplied accumulator and gauge between the filter and the Clark pump per photos. From Clark pump brine discharge connector use supplied 5/8 (15.9mm) clear braided vinyl hose.

Route all hoses and tubes to prevent kinks and restrictions. Secure piping away from moving objects such as engine belts and hatches. Prevent chafe on tubing as required. Test and inspect all piping and hose clamps after several hours of operation.

700/1000 Systems

From the inlet thru hull to the flush module and from flush module to the pump module inlet use the supplied clear 3/4 (19mm) spiral suction rated hose. The outlet of the filter assembly on the main module to the Clark pump assembly is under a pressure of 200 PSI (14.5 bar). Use the supplied 1/2” (12.7mm) tubing. Follow the Parker assembly instructions. From the Clark pump brine discharge quick disconnect fitting use the supplied 5/8 (15.9mm) clear braided vinyl hose.
The outlet of the filter assembly on the main module to the Clark pump assembly is under pressure. Use the supplied braided clear vinyl hose rated to 150 PSI (11 bar).

Install the supplied accumulator and gauge between the filter assembly and Clark pump.

From the Clark pump brine discharge connector use the supplied 5/8 (15.9mm) clear braided vinyl hose.

The outlet of the filter assembly on the main module to the Clark pump assembly is under pressure. Use the supplied braided clear vinyl hose rated to 150 PSI (11 bar).

From the inlet thru hull to the flush module and from the flush module to the pump module inlet use the supplied clear 3/4 (19mm) spiral suction rated hose.

400 Systems Piping Specification
From the inlet thru hull to the flush module and from the flush module to pump module inlet use the supplied clear 3/4 (19mm) spiral suction rated hose.

Note! 700/1000 systems use Spectra high pressure tubing with stainless fittings. See page 44 for assembly instructions.

From the Clark pump brine discharge quick connector to the overboard thru hull use the supplied 5/8 (15.9mm) clear braided vinyl hose.
Note: !When plumbing the Newport Pump Module route the feed water so that the front cover may be opened without removing the hose or tubing.

Fresh Water Flush

Run a feed line from the domestic cold pressure water system to the 1/2 hose barb on the fresh water flush assembly. This needs to be active when the boat is unattended for the fresh water flush system to function properly. The domestic fresh water pump must be able to deliver 2.5 gallons per minute at 25 PSI. Connect the wiring harness and heat shrink butt splices.
Product Water tubing

400 700 1000 Systems

Product water tubing is 1/4 “ (6.3mm) parker tubing on the 400 and 3/8”(9.5mm) on the 700/1000 models. See the Parker tube fitting assembly diagram next page. Product water is pre-plumbed from the membrane into the electric diversion valve. The diversion valve will dump product water into the overboard brine stream until good quality is measured by the MPC-3000 control. Product water is then diverted into the fresh water tank. You will need to route the product water from the valve into the top of the tank. Install a tee in the water fill or tap a pipe thread into an inspection port in the top of the tank. Do not feed the water into a manifold or bottom of the tank. Make sure there is no restriction in this plumbing.

Brine Discharge

Route the Brine discharge from the quick disconnect fitting to location above the waterline using the supplied 5/8 (15.9MM) hose.
Parker Tube Fitting Assembly Procedure

Step 1: Disassemble fitting components

Step 2: Install the Nut first then use the bevelled side of the Spacer to push the Grab Ring onto the tube no more than 1/2". Slip the O-ring over the tube to hold the Spacer in place. If the Grab Ring is pushed too far, trim back the tube so about 1/4" of tube extends past the O-ring.

Step 3: Gently fit the tube into the body and loosely thread on the nut. Be careful not to cross-thread the nut.

Step 4: Hand tighten the nut. DO NOT OVER TIGHTEN! DO NOT USE A WRENCH! The tube should not come out if pulled by hand. If it does, tighten the grab ring tabs.

1/4", 3/8", 1/2" Parker Tube Fitting Assembly
Wiring

400 12V/24V systems
Identify cables that are connected to the Newport Main module.

400 Systems will have Power inlet harness with a terminal block, Fresh water flush harness, and Clark pump module harness consisting of the stroke sensor, salinity cable and the diversion valve control lead. And a 50’ (15M) harness with connectors for the MPC-3000 control display.
Wiring 700/1000 24V DC Systems

Identify cables that are connected to the Newport Main module.

Systems will have Power inlet harness with junction box, Fresh water flush harness, and Clark pump module harness consisting of the stroke sensor, salinity cable and the diversion valve control lead. And a 75’ (26 M) harness with connectors for the MPC -3000 control display.
400/700/1000 AC Versions

400/700/1000 systems AC 120V, 220V, 240V will have an integral electrical enclosure that mates to the Newport pump module. This enclosure houses the Variable Frequency motor Drive and the MPC-3000 control board. The VFD serves several functions. First it allows the machine to run with almost any AC frequency. Regardless of the input conditions the drive will hold a constant motor speed. The motor controller outputs three phase AC to the motor allowing it to run quieter and more efficiently. The control will “soft start” the motor, preventing generator sag or dimming lights. This will allow the watermaker to be run on a very small generator if desired. The motor control also slows the motor for the flush and maintenance procedures.

AC Pump Module Assembly
Power inlet harness with terminal block (Note: AC Systems will have two terminal blocks. The AC input will be three wires with green as ground (safety Ground). The two wire terminal block will be the DC control power feed.

MPC-3000 control display cable

Diversion valve control feed

Salinity probe cable

Stroke sensor

The Control module may be de-mounted for relocation within 4’ (1.2M) of the pump module.

A long screwdriver will be required to access the fasteners
Wiring (continued)

Mount the main power terminals or junction box on a bulkhead adjacent to the feed pump module. Make sure that this is a dry location well above bilge level and not subject to water spray.

Route the control cable through the boat to the MPC display location. Be careful not to damage the connector. Plug this into the back of the control.

Route the Clark pump harness to the high pressure pump location and install stroke sensor (see photo). Plug in the salinity sensor cable and install the plastic boot over the connection.

Locate the diversion valve wires and splice the remaining two conductor cables with the supplied butt splices. These are heat shrink connectors so you can seal them after splicing.

Route the single two conductor harnesses to the fresh water flush module and splice the wires to the solenoid wires. Heat the splice for sealing.

Check the wire size chart to select the proper size power feed to the main power harness. DC power feeds should be uninterruptible so as not to lose the microprocessors memory during storage cycle. Avoid house breaker panels that could be easily tripped.

DC Systems:

400 Systems
- 12V Use a 35Amp breaker and size the wiring for 26Amperes.
- 24V use a 15 Amp breaker and size the circuit for 13Amperes.
- Provide circuit protection at the source! Inadequate wiring will cause a loss of system performance. DC power should be uninterruptible.

700/1000 Systems
- 120V Install a 30Amp breaker at source and size the wiring for 25Amperes.
- 220/240V Install a 12A breaker at the source wiring for 15Amperes.
- Provide circuit protection at the source! Inadequate wiring will cause a loss of system performance. DC power should be uninterruptible.

Note: If the specified circuit breaker sizes are unavailable use the next higher rating but do not exceed the specification by more then 10%. All wiring to be done to applicable ABYC, Marine UL or CE standards.
Newport 400 12V DC System Wiring

<table>
<thead>
<tr>
<th>Wire Length FT.</th>
<th>Meters</th>
<th>AWG.</th>
<th>SQ MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>4.5</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>6.1</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>25</td>
<td>7.6</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>30</td>
<td>9.4</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>35</td>
<td>10.6</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>40</td>
<td>12</td>
<td>2</td>
<td>35</td>
</tr>
<tr>
<td>45</td>
<td>14</td>
<td>2</td>
<td>35</td>
</tr>
<tr>
<td>50</td>
<td>15</td>
<td>2</td>
<td>35</td>
</tr>
</tbody>
</table>

Newport 400 24V

<table>
<thead>
<tr>
<th>Wire Length FT.</th>
<th>Meters</th>
<th>AWG.</th>
<th>SQ MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>4.5</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>20</td>
<td>6.1</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>25</td>
<td>7.6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>30</td>
<td>9.4</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>35</td>
<td>10.6</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>40</td>
<td>12</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>45</td>
<td>14</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>50</td>
<td>15</td>
<td>4</td>
<td>25</td>
</tr>
</tbody>
</table>

Newport 7000/1000 24V

<table>
<thead>
<tr>
<th>Wire Length FT.</th>
<th>Meters</th>
<th>AWG.</th>
<th>SQ MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>4.5</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>20</td>
<td>6.1</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>25</td>
<td>7.6</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>30</td>
<td>9.4</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>35</td>
<td>10.6</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>40</td>
<td>12</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>45</td>
<td>14</td>
<td>4</td>
<td>25</td>
</tr>
<tr>
<td>50</td>
<td>15</td>
<td>4</td>
<td>25</td>
</tr>
</tbody>
</table>
110 Volt AC System Motor Wiring

Wire length for a pair of wires is measured from source circuit breaker to control box.

<table>
<thead>
<tr>
<th>Wire Length</th>
<th>AWG wire size</th>
<th>Square MM wire size</th>
</tr>
</thead>
<tbody>
<tr>
<td>To 25 feet (7.5M)</td>
<td>12 awg</td>
<td>3 sq mm</td>
</tr>
<tr>
<td>25 feet to 50 feet (7.5M to 15M)</td>
<td>10 awg</td>
<td>5 sq mm</td>
</tr>
<tr>
<td>50 feet to 75 feet (15M to 23M)</td>
<td>8 awg</td>
<td>8 sq mm</td>
</tr>
</tbody>
</table>

220/240 Volt AC System Motor Wiring

<table>
<thead>
<tr>
<th>Wire Length</th>
<th>AWG wire size</th>
<th>Square MM wire size</th>
</tr>
</thead>
<tbody>
<tr>
<td>To 25 feet (7.5M)</td>
<td>14 awg</td>
<td>2 sq mm</td>
</tr>
<tr>
<td>25 feet to 50 feet (7.5M to 15M)</td>
<td>12 awg</td>
<td>3 sq mm</td>
</tr>
<tr>
<td>50 feet to 75 feet (15M to 23)</td>
<td>10 awg</td>
<td>5 sq mm</td>
</tr>
</tbody>
</table>
MPC-3000 Electrical Connections

This section describes the MPC control components. These are pre-wired and require little attention. We describe them so that you can understand all the features of your system and can install additional options.

The MPC-3000 Controller

Every Newport model watermaker includes an MPC-3000 controller pre-installed. This is the “brain” of the Newport system; it is pre-programmed to do everything: monitor system pressure, vacuum, salinity level of product water, gallon-per-hour product output, tank level, as well as tell the pumps when to turn on and off, when to open product valves or flush valves, etc. The unit has been programmed to run in different “modes” (production mode, timed mode, flush mode, etc.)—refer to “Operating Modes” later in this manual for more information on use of modes.

No changes to the wiring should be necessary, unless you wish to install additional options or lengthen any of the cables to suit your installation needs. If this is the case, please refer to the respective chapter in this manual for additional information on where to connect additional devices, as well as current and voltage limitations of the board.

ALWAYS mount this unit away from any possible water spray, drips, hose connections, etc. Keep the unit’s cover on at all times.
MPC Remote Control Display Panels

There are currently two types of display options available: Liquid Crystal Diode (LCD) display, which is dark lettering on a backlit background, or Vacuum Florescent Display (VFD), which are bright characters on a dark background. The VFD demands more power from the MPC controller, and currently, only one VFD can be run at a time. You can run one VFD and two LCD’s, or three LCD’s at any time.

The displays must be mounted in a protected location, out of direct sunlight, and away from spray or dripping water. Commands to the system can be entered at any panel.

The display panels connect with the supplied 50 foot modular-type cable to the MPC board sockets marked “DISPLAYS.” Do not substitute a different type of cable! Contact the factory if you need longer or additional cables.

Each remote control display panel can accommodate an external alarm buzzer to provide audible alerts in the event of a fault or at the end of certain timed cycles. Use only the buzzer units supplied by Spectra Watermakers, as current on the LCD buzzer terminal is limited to 20 mA, any excessive load may damage the controller or remote display panel. Connect the buzzer RED wire to the terminal marked +POSITIVE, connect the buzzer BLACK wire to the terminal marked –NEGATIVE on the back of the remote display panel.

A buzzer may also be installed at the control box, current limit is 150mA.
Pressure Sensors

The pressure sensors mount on the prefilter housing to monitor system pressure and differential pressure across the filters.

If the wire leads for the sensors must be extended, you must use a minimum 18AWG 3 conductor twisted and shielded marine grade wire. Make both sensor wires close to the same length. Make a waterproof, soldered splice connection to the new wire, and seal the splice in waterproof heat shrink tubing.

Stroke Sensor

The stroke sensor snaps into the side of the end block of the Clark pump, and the wires connect to the terminal plug on the MPC board marked “stroke sensor 1” on the left side of the terminal plug. If the wire leads for the sensor must be extended, you must use a 3 conductor, twisted and shielded marine grade wire. Make a waterproof, soldered splice connection to the new wire, and seal the splice in waterproof heat shrink tubing. Caution! Make certain that no extra strands are free to make contact with other conductors or components. Integrity of the sensor wiring is critical, as any loss in the connections will be interpreted by the controller as a “SYSTEM STALLED” condition. Be sure to carefully solder-tin the bare strands of the wires before inserting them in the terminal plugs.

If the stroke sensor must be removed, use a pen knife to find and depress the opposing clips holding the sensor to the block.

Diversion Valve and Salinity Probe

This system is pre-wired and plumbed either at the Feed Pump/Main module or at the Clark pump/Membrane module on Newport models. The salinity probe should be removed and cleaned once a year if incorrect readings occur. The probe wire is connected by a plug under the rubber boot at the sensor, which connects to the “PROBE” socket on the MPC board.

The diversion valve is connected by an 18ga 2 conductor, twisted and shielded marine grade wire to the “GND” and “DVLV” terminals on the MPC board.
Connection of Optional Accessories

Use of any external devices not approved by the factory may cause permanent damage to the controller and is not covered by the Spectra warranty. Accessory outputs are limited to 2 amps maximum load! Do not connect motors, pumps, etc to accessory outputs.

Optional Z-Guard System: Detailed instructions are included with the Z-Guard kit. Connect to the “Aux1” and “GND” terminals of the MPC board.

Ultraviolet Sterilizer: Detailed instructions are included with the sterilizer kit. The UV sterilizer lamp module and ballast unit should mount vertically, with the product water inlet at the bottom, outlet at the top. The ballast wires plug into the end of the bulb in the lamp module. The ballast RED wire connects to “STER” terminal on the MPC board, and the ballast BLACK wire connects to the “GND” terminal. If the wires must be extended, use minimum 16AWG wire.

External Buzzer(s): In addition to the external buzzer(s) installed at each remote control display panel, a buzzer unit may be installed at the control box. The buzzer RED wire connects to the “BUZZ” terminal on the MPC board, and the buzzer BLACK wire connects to “GND.”
Tank Switch Installation and Operation:

There are two sets of terminals on the MPC-3000 PCB that can be used in four different configurations to automatically start and stop the watermaker or to automatically stop the watermaker when the tank(s) are full without the auto start feature. These terminals are on the green ten pin connector and are labeled “Float Switch 1” and “Float Switch 2.” Float Switch 1 is the tank full switch and Float Switch 2 is the tank empty switch.

If the unit is wired for both Autostart and Autostop, it can be put into AutoFill Mode by pushing and holding the Auto Run switch on the MPC-3000 display. In this mode the watermaker will start whenever the water level drops below the tank empty switch, so that it is open (not conducting electricity). When the tank fills up and both the tank full switch and the tank empty switch have remained closed for two minutes, the watermaker will shut down and flush itself. The watermaker will start back up when the water level drops below the tank empty switch and it remains open for 2 minutes. This configuration allows for completely automatic operation. If the watermaker does not need to start up within five days it will automatically do a fresh water flush. AutoFill mode can be ended by pushing the stop button or the Autoflush button. If the watermaker is in Autorun mode it can be put into Autofill mode without stopping it by holding down the Autorun button.

If the owner prefers to install the automatic shutoff feature without the automatic start up option, only the tank full switch is used. A jumper must be placed between the tank empty terminals (Float switch 2) in place of the tank empty switch, because the watermaker will only shut down if both sets of terminals are closed. To use this mode the watermaker must be started up with the Stop/start button or the Autorun button. After the unit starts up, then press and hold the Autorun button until the display reads “Auto Fill Mode”. The watermaker will fill the tank and automatically enter Autoflush mode.

It is possible to use the autofill feature with 2 tanks. A double throw electrical switch must be installed in a convenient location. If only the single tank full switch is installed in each tank connect the wire from the Float Switch 1 terminal “1” to the common on the switch and run separate wires from the switch to each tank switch. The second wires can both be run to the Float Switch 1 terminal 2. If you are using two switches in each tank you will need a double pole double throw switch.
New System Start-Up and Testing

Avoid running the system if the vessel is in contaminated water, such as in a harbor or canal. The system should be fully run tested before leaving port. It is preferable to sacrifice a filter by running the system in turbid water rather than waiting to get offshore to discover a problem or deficiency in the installation. If the location or weather prevents proper testing refer to the section “Dry Testing.”

Warning! Damage may occur if the purge sequence is bypassed and the membrane is pressurized with storage chemical in it.

1. First Check That:
 - Thru-hull valve is open
 - Power is on. If you have an AC system both the AC power and the DC control voltage to the unit needs to be on.
 - Manual/Auto Run Switch in “Auto” Position
 - Manual/Auto Flush Switch in “Auto” Position
 - Domestic fresh water system must be on

2. Open pressure relief valve 1/2 turn!

3. Power up the system
 - Alarm will sound-
 - Push the Alarm/Display button to silence alarm
4. Press Auto Run Button

The system will go into a start mode and the feed pump will start shortly after. The system should prime within 60-90 seconds. Check the strainer and the brine discharge for water flow. There should be no bubbles anywhere in the intake hoses and the feed pump should sound smooth after priming. If the feed pump continues to sound rough, find the reason before continuing! Inspect the system for leaks.

Note: If you must stop the purge sequence for any reason, the control will default back to the beginning of the purging mode to protect your system. If you wish you can bypass the purge sequence and initiate a normal start. Pressing both “Auto Run” and “Stop” simultaneously anytime during the purge sequence will bypass the purge sequence and enable a normal start.

5. After the purge sequence. The control will alarm with the message “Close pressure relief valve” - Close the valve and proceed by pressing “Auto Run.”

6. The system is now running under pressure and making water. The display will read “purging product water.” This mode dumps the product water overboard for ten minutes in case there is any residual chemicals in the membrane. Carefully inspect for leaks over the entire system! Shut down the system and repair any leaks you find.

7. The system is now in the operational mode. You may start and run you system as you desire. You will not have to go through the purging mode unless you “de-power” the system. If you do, you can bypass the purging mode by pushing “Stop” and “Auto run” buttons at the same time. It is best to use the auto-run button which defaults to the automatic fresh water rinse. If you shut down the system from the stop button then use the auto store button to effect a fresh water flush cycle.

8. Check that the system is operating within its normal parameters. Compare with the chart on the next page
Product Flow

400 Will produce 15 - 16.5 GPH (60 - 65 LPH)

700 will produce 29 - 30 GPH (115 - 120 LPH)

1000 will produce 33 - 40 GPH (155 - 160 LPH)

Salinity

This may not show any lit bars on a new system. One bar represents 100 PPM. System rejects water higher than 750 PPM.

Feedwater Pressure

400 Pressure range 100 - 125 PSI (7 - 9 BAR)

700/1000 Pressure 200 - 225 PSI (14 - 16 BAR)

Pressure will be higher in cold water and lower in warm water.

Filter Condition

Clean filters on first alarm as soon as convenient.
Dry Testing With Artificial Ocean

If it is not possible to test run the system with the boat in the water testing may be accomplished with an artificial ocean. Purchase enough aquarium salts to make 5 gallons (20 liters) of salt water.

Make sure that the domestic water system is powered up and that there is water in the tank. Confirm that the Charcoal filter is installed in the Fresh water flush module and that the domestic water line had been installed and all valves are open.

1. **Open Pressure Relief Valve.**
2. Power up the control system.
3. Press both “Auto Run” and “Stop” to bypass the purge sequence. If the motor starts, stop immediately and press the Auto run and stop button again until you get a message **PURGE MODE BYPASSED.**
4. Press the Auto Store button and allow the fresh water flush system to cycle through its timed operation. Cycle the auto store system 5 more times to purge all of the storage chemicals out of the system.
5. Hook up your service hoses per the service diagram and photos. Route them into a 5 gallon (20 Liter) bucket. Disconnect the product tube from the diversion valve and using another short piece of tube route the product water feed into the test bucket.
6. Turn the valve on the fresh water flush module from “Run” to “Service.”
7. Press auto flush one or two more times to get enough water into the bucket to properly mix your salt water. Mix the salt until it goes into solution. If you are using a hydrometer mix the water to be 34,000 PPM. Close the pressure relief valve and start the system using the “Auto Run” Button.
8. Run and test the system for as long as possible. During the run test carefully inspect for leaks. Check all of the system parameters to make sure the system is operating correctly. Do not allow the water in the bucket to get above 120°F (50°C).
9. Store the system per the “Storage” instructions.
Normal Start Up Using the Auto Run Button

- Press Auto Run button once and the system will prime and run for 1 hour. The display reads “AUTO RUN MODE” then “STARTING” with a 30 second priming countdown timer. After the prime, the display reads “AUTO RUN MODE” with a countdown timer. An hour of run time is added, up to 12 hours, with each successive momentary press of the Auto Run button. An hour can be added at any time. The display shows the default readout unless there is an alarm condition. Successive presses of the Alarm/Display button will scroll through the displays starting with “GPH PRODUCT.” Upon auto shut down by the timer or by the optional tank full float switches, the system will automatically fresh water flush and re-flush every 5 days.

- Pressing the Stop button stops the sequence at any time with no flushes.

Normal Operation

- For optimum performance, Auto run the system as long as possible at one time. Never let the system sit with salt water in it. Never allow continuous air leaks in the intake.

Normal Shut Down

- If the system was started using the Auto Run button, the system will shut off on its own when the selected run time is over and will auto flush every 5 days.

- Pressing the Stop button at any time will shut off the system with no auto flush function.

- The optional tank float switches will shut off the system from any mode. If the system was started by the Auto Run button the system will flush and then re-flush every 5 days. If the system was started by the Start/Stop button it will do a 1 time flush. The display will read “TANK/S FULL.” Once one of the tank float switches opens, the alarm and “TANK/S FULL” display will cease on its own. Note that if “TANK/S FULL” is displayed, the system cannot be restarted.
Automatic Fresh Water Flush Cycle

Warning! Proper understanding of the Spectra flush system and the vessel’s fresh water system configuration is mandatory for extended automatic flush cycles. The flush cycle must not be allowed to drain all the fresh water from the vessel or damage to the vessel’s systems may occur.

- Make sure there is enough water in the fresh water supply system to supply the watermaker for more than the expected time of operation in the “reflush every 5 days” mode. The 400 requires 4 gallons (16 liters) and the 700/1000 units require 6 gallons (24 liters) every 5 days.

- Make sure that the pressure water supply is on and will stay on during the flush mode (If this is not possible contact your certified dealer.).

- Make sure that the pressure relief valve is closed. It should be closed if the system was just used to make water. The auto flush may not operate if the valve is open.

- The power for the system must remain on during the auto flush mode. Turning off the power will disable the auto flush function and damage may occur.

- Pressing the Auto Store button will engage a flush and then the 5 day flush cycle. The flush pump starts and the flush water solenoid opens for 5-7 minutes and then shuts down the display reads “FRESH WATER FLUSH” with a countdown timer and then will read “FLUSH TIMER INTERVAL” and the countdown timer will reflect the number of hours until the next flush.

- Pressing and holding the Auto Store button for 3 seconds will engage a 1 time flush. The system flushes as described above but will not re-flush every 5 days. Display will read “FRESH WATER FLUSH” with a countdown timer, then the default display when finished.

- Pressing the Stop button will cancel the auto flush mode.
Emergency Operation

- In the event of an MPC control failure, the system may be operated manually using the manual feed switch on the MPC control box.

- For manual start up, switch on the feed pump using the feed pump switch. Shut the unit down if the Clark pump does not cycle. Shut down if air is continuously present in the intake line or if the feed pump is excessively noisy. The automatic safety controls are disabled in manual mode.

- Always discard the product water for the first few minutes of operation. The initial product water from the system may not be potable. Taste the product water before sending to a tank.

- In manual operation, the salinity control is inoperative. Product water is available either directly from the membrane product water out or at the diversion valve brine outlet. You will have to bypass the diversion valve with the parker tubing.

Disconnect product fitting.

Remove check valve and reconnect the Brine tube to the check valve as shown.

Connect Product tube to diversion valve.

Activate manual switch.
Long Term Storage Procedures

Watermakers are best run continuously. When not in use, biological growth in the membrane is the leading cause of membrane fouling. A warm environment will cause more growth than a cold environment. The auto fresh water flush system will greatly reduce biological growth but may not stop it completely in certain conditions. The 5 day re-flush feature allows the system to be shut down without any service procedures for extended periods of time but it doesn’t replace performing a storage procedure for long periods of non-use. If an optional “Zeta Guard” water treatment system is installed in the system, the 5 day re-flush will maintain the system as long as unchlorinated pressurized fresh water is provided.

System Storage or “Pickling”

If the system is to be left unused for more than 2 weeks, perform the following storage procedure. The procedure introduces a chemical compound into the system that prevents biological growth. This procedure requires de-chlorinated water which can be made with the Spectra’s charcoal filter. **Charcoal filters last a maximum of 6 months once wetted.**

*Spectra SC-1 a special storage compound used by the US Navy. It is formulated to be compatible with the modern engineering plastics and composites in the Spectra pumps. Do not use any substitute except propylene Glycol, SC-1 Storage Compound has to be mixed at a ratio of 1 Spectra container to 3 gallons (12L) of fresh water to have the proper solution. An average of 2 gallons (8L) of water is in a 400 system or 4 gallons (16L) in a 1000 system. This water has to be figured in to the mixture. A 400 system uses one SC-1 container. A 700/1000 system uses two containers. Do not be concerned if the powder does not go completely into solution.

Caution! Avoid contact with skin, eyes, or lungs with the storage chemical.
Storage Procedure:

- **Step 1:** Flush the system twice. Use the “Auto Flush” button on the LCD display, once the first flush has been completed, press “Stop” to cancel the 5 day interval timer, then press “Auto Flush” again.

- **Step 2:** Remove the quick disconnect fitting from the brine discharge outlet of the Clark pump, and replace with a quick disconnect from your service kit, fitted to a hose, and lead the hose to a 5 gallon bucket.

- **Step 3:** Press “Auto Flush” again to fill the bucket with fresh unchlorinated water: 1 gallon for 400 systems, 2 gallons for 700/1000 systems. Press “Stop” when the bucket has reached the desired level. *(700/1000 Systems may use the switches on the control box)*

- **Step 4:** Connect a hose, using the garden hose barb fitting from your service kit, to the service port of the fresh water flush module. Lead the hose into the bucket. Turn the service valve on the fresh water flush module 180°, so the intake is now coming from the bucket.

- **Step 5:** Mix the storage chemical compound into the water in the bucket.

- **Step 6:** Make sure the pressure relief valve on the Clark pump is **Open** (unpressurized).

- **Step 7:** Use the “Feed Pump Manual” switch *(700/100 systems use the service switch)* on the MPC control box to turn on the feed pump. Circulate the storage chemical in the system for approximately 10 minutes. Turn off the switch when finished.

Clean Up:

- Remove the quick disconnect from the Clark pump brine discharge, and replace the original hose that leads to the thru-hull. You may at this point, if you choose to, pump the bucket dry by using the feed pump switch. Stop when the bucket is empty.

- Turn the service valve 180° back to its original position, and remove the service hose.
- Turn off the power to the system and the MPC control.
Step 1: Flush the system by pressing “Auto Flush” on the LCD display. Press “Start/Stop” when the flush is done, to cancel the 5-day timer. Then press “Auto Flush” to flush the system a second time. Press “Auto Flush” to flush the system a second time. Press “Start/Stop” again when finished.

Step 2: Remove brine discharge, and replace with service hose leading to bucket.

Step 3: Press “Auto Flush” to fill bucket with desired level of fresh water. Press “Start/Stop” when done.

Step 4: Connect a service hose to service port of FWF module, lead hose to bucket, and turn service valve 180°.

Step 5: Mix SC-1 into bucket.

Step 6: Make sure pressure relief valve is open. Use feed pump manual switch to activate pump, run for 10 minutes.

Step 7: [Diagram showing process]

Step 8: You’re done!
Winterizing

Warning! Only use potable water antifreeze (Propylene Glycol). Do not use automotive antifreeze (Ethylene Glycol).

Storage and Winterizing

- Step 1: Flush the system twice. Use the “Auto Flush” button on the LCD display, once the first flush has been completed, press “Stop” to cancel the 5 day interval timer, then press “Auto Flush” again.

- Step 2: Remove the quick disconnect fitting from the brine discharge outlet of the Clark pump, and replace with a quick disconnect from your service kit, fitted to a hose, and lead the hose to a 5 gallon bucket.

- Step 3: Press “Auto Flush” again (700/1000 systems use the flush switch on the control box) to fill the bucket with fresh un-chlorinated water: 1 gallon (4 liters) for 400 systems, 2 gallons (8 liters) for 1000 systems. Press Stop” when the bucket has reached the desired level.

- Step 4: Connect a hose, using the garden hose barb fitting from your service kit, to the service port of the fresh water flush module. Lead the hose into the bucket. Turn the service valve on the fresh water flush module 180°, so the intake is now coming from the bucket.

- Step 5: Mix the propylene glycol into the water in the bucket. Follow the instructions on container.

- Step 6: Make sure the pressure relief valve on the Clark pump is open (unpressurized).

- Step 7: Use the “Feed Pump Manual” switch on the MPC control box (700/1000 systems use the service switch) to turn on the feed pump. Circulate the storage chemical in the system for approximately 10 minutes. Turn off the switch when finished.

- Step 8: Disconnect the product water tubing and use compressed air to blow any residual water out of the lines to prevent freeze damage.

- Step 9: Turn off the power to the entire system.

Clean Up:

- Remove the quick disconnect from the Clark pump brine discharge, and replace the original hose that leads to the thru-hull. You may at this point, if you choose to, pump the bucket dry by using the feed pump switch. Stop when the bucket is empty.

- Turn the service valve 180° back to its original position, and remove the service hose.
Maintenance

General

Periodically inspect the entire system for leakage and chafe on the tubing and hoses. Repair any leaks you find as soon as practical. Some crystal formation around the Clark pump blocks is normal. Wipe down any salt encrusted areas with a damp cloth.

The Seawater Strainer and 50 Micron Filter

- The seawater strainer’s stainless steel element should be inspected, removed, and cleaned as needed. A clogged strainer or 50 micron filter will cause the MPC control to alarm “Check Sea Strainer.” Be careful to ensure that the thru-hull is closed before disassembly and the seal and element are in place before reassembly. Put the screen up to a light for inspection. When the system is put into storage, remove, rinse, and reassemble dry to impede corrosion. Check frequently during operation.

- The 50 micron filter needs to be properly maintained to protect the feed pump. Only use Spectra approved filters. These may be cleaned several times before discarding.

The Prefilters

- Service the prefilters as soon as possible after the first prefilter alarm sounds. When the second alarm sounds the system will shut down to prevent damage. If cleaning and reusing filter elements, clean when the first segment appears on the filter condition bar graph on the LCD display.

- To service the filters shut off the thru-hull, open the housings, discard the old filters, clean out the housing bowls, reassemble the housings with new 20 and 5 micron filter elements. The 5 micron filter goes downstream from the 20 micron. Leave dry until next startup.

- Use only Spectra approved filters or you may void your warranty. The filters may be cleaned several times with a soft brush and water in a bucket. Occasionally, lightly lube the O-rings with silicone grease.

Oil Water Separator (Optional)

To install oil water Removal capability remove the supplied 20 micron filter element in the duplex filter set and replace with the 20 micron oil water separator cartridge. Replace this when the MPC alerts you with a “Service Prefilter” alarm.

The Charcoal Fresh Water Flush Filter

- Replace the charcoal filter element at least every 6 months.
The Membranes

- The membranes need to be cleaned only when they have lost up to 15% of their capacity due to fouling or the product quality degrades. The leading cause of fouling is from biological growth that occurs when the system is left unused without flushing or pickling. Fouling from mineral scaling can happen during operation under certain sea water conditions, and from rust. Monitor the product salinity and feed pressure bar graphs for higher than normal readings for the conditions. Other conditions can cause high pressure such as cold feed water or clogged filters. Low product flow is usually due to low voltage, damaged feed pump or Clark pump. Look for all other causes before cleaning the membrane. Membrane life can be shortened by excessive cleaning.

- There are two types of cleaners: acid and alkaline. The acid cleaner (SC-3) will remove mineral scaling. The alkaline cleaner (SC-2) is used to remove biological by-products, oil, and dirt particles that get past the prefilters. If membrane performance is reduced and they have not been pickled recently, cleaning with both chemicals is recommended. The acid cleaner should be used first. If the membrane fails to respond to both cleanings, this is an indication of another problem with the system, or that it is time to replace the membrane. Contact Spectra Watermakers before removing a membrane.

Membrane Cleaning

For normal cleaning, the SC-3 Acid Cleaning Compound is used first, then the SC-2 Alkaline Cleaning Compound. If known bio-fouling is present, the SC-2 may be used first. Using hot water if possible, up to 120° (45°C) is recommended as it greatly enhances the ability of the cleaners to do their jobs.

If the history of the system is unknown or has been left “unpickled” for an extended length of time and biological growth is present, it is recommended that the system is cleaned with SC-2, using an alternate source of unchlorinated fresh water before the system is run under pressure. A simple test can be performed to see if biological growth has occurred. Before running the system, remove the prefilters and examine their condition. If the housings are full of smelly discolored water, the system was not properly stored. Install clean prefilters if they were bad. Next check the membrane. Detach the brine discharge hose and lead to a bucket. Open the pressure relief valve one turn, and manually run the system for 30 seconds. Examine the brine water: if it’s discolored and smells bad, perform an SC-2 cleaning with an alternate source of unchlorinated water before running the system pressurized. If the brine is fairly clean, the system can be purged, run normally, and checked for performance. Clean the membranes only if performance is reduced.

Heating the water is preferable. One way to do this is to find a camp stove and use a large stainless steel pot to heat the solution in. The cleaning solution throughout the system will heat as it circulates in and out of the pot. An alternative is to heat the one or two gallons of initial water to 120° on the main stove before mixing in the cleaner and circulating it into the system. Periodically stop and reheat the solution.

Perform the cleaning procedures while the ship is in acceptable sea water for purging and testing.
Cleaning Procedure:

- Step 1: Flush the system twice. Use the “Auto Flush” button on the MPC -3000 display, once the first flush has been completed, press “Stop” to cancel the 5 day interval timer, then press “Auto Flush” again.

- Step 2: Remove the quick disconnect fitting from the brine discharge outlet of the Clark pump, and replace with a quick disconnect from your service kit, fitted to a hose, and lead the hose to a 5 gallon bucket.

- Step 3: Press “Auto Flush” again (700/1000 systems use service switch) to fill the bucket with fresh unchlorinated water: 1 gallon (4L) for 400 systems, 2 gallons (8L) for 1000 systems. Press “Stop” when the bucket has reached the desired level.

- Step 4: Connect a hose, using the garden hose barb fitting from your service kit, to the service port of the fresh water flush module. Lead the hose into the bucket. Turn the service valve on the fresh water flush module 180°, so the intake is now coming from the bucket.

- Step 5: Mix the cleaning chemical compound into the water in the bucket.

- Step 6: Make sure the pressure relief valve on the Clark pump is Open (unpressurized).

- Step 7: Use the “Feed Pump Manual” switch (700/1000 systems use service switch) on the MPC control box to turn on the feed pump. Circulate the storage chemical in the system for approximately 25 minutes. Turn off the switch when finished.

Clean Up:

- Remove the quick disconnect from the Clark pump brine discharge, and replace the original hose that leads to the thru -hull. You may at this point, if you choose, to pump the bucket dry by using the feed pump switch. Stop when the bucket is empty.

- Turn the service valve 180° back to its original position, and remove the service hose.

Note: Procedures are the same for the SC-2 and SC-3 cleaners

Warning! The pressure relief valve on the Clark pump must be open for this procedure or membrane damage may result. Maximum pressure 50 psi.

A Spectra Cleaning Compound (SC-2 or SC-3) must be mixed with fresh water at a ratio of 1 container of compound to 3 gallons (12L) of unchlorinated water to have the proper solution. An average of two gallons (8L) of water is already present inside a 400 system or 4 gallons (16L) in a 1000 system. This water has to be figured into the mixture. A 400 system will use 1 container of compound, a 1000 system will use 2. SC-2 and SC-3 are never mixed together. Do not use them for storage pickling solution.
Salinity Probe Calibration:

Salinity is a measurement of TDS, total dissolved solids in liquid: these solids will conduct electricity to varying degrees. A special probe is used, with two electrical contacts in it, to determine the resistance to the flow of electricity in the liquid.

In the Spectra Watermakers systems, the salinity probe is located just before the diversion valve, at the output of the RO membrane. This way we can look at the salinity level of the product water before deciding to either reject the water or accept it and divert it into the holding tank.

The salinity level in parts-per-million can be seen either through the salinity meter in the software, or a jumper can be added to the MPC board in the ‘calibrate’ position, where it can then be seen on the LCD display (rather than a bar graph). After adding the jumper, it may be necessary to cycle through the different LCD displays until the display reads ‘salinity.’

Procedure:

1. Locate the Calibrate jumper location on the MPC -3000 Board. Jump the terminals

2. Start the system and after the salinity stabilizes, test the product water with a calibrated hand held tester.

3. Locate the MPC calibration trimmer potentiometer on the board below the salinity probe jack. Adjust until the display PPM matches the PPM reading from the hand held salinity monitor. Turning the trim pot clockwise will lower the salinity reading, and counter-clockwise will raise it.

4. Shut the system down and disconnect the jumper on the MPC board.

If a hand held meter is not available you can remove the probe and dip it into a known calibrated solution. This can be obtained from Spectra.
Vane Pump Replacement

Remove the front cover of the pump control module. Leave filters attached.

Loosen nut on the black plastic tube.

Loosen the V band clam until pump head can be removed.
Loosen the hose clamp on the inlet hose.

Drop the pump down and remove the coupling tang.

Remove the inlet hose by rotating the pump counterclockwise.

To Reinstall, open the band clamp all the way. Make sure the coupling tang is in place. Tang ends may be different width. Mate the pump flange to the motor flange. Hold the pump firmly against the flange while lining up the clamp. Squeeze the clamp over both flanges and hold the pump in place while you tighten the clamp screw.

The Plastic tube nut (400 systems) should be just past hand tight. *Do not over tighten.* On 700/1000 systems use two wrenches to tighten the stainless tube nut firmly.
Suggested Spares

Short term cruising, weekends etc.

We suggest a basic cruise kit. Kit consists of 3 ea, 50 micron, 20micron, and 5 micron filters and two SC-1 storage chemicals.

Cruising 2 to 6 months at a time.

Two basic cruise kits, One each replacement charcoal filter. One replacement feed pump head.

Longer than 6 months.

Additional filters, offshore cruising kit consisting of Clark pump seals, O-rings, tools and membrane cleaning chemicals. One replacement strainer screen, O-ring for strainer screen, O-rings for filter housing

Spectra Watermakers parts list:

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC-1 STORAGE CHEMICAL</td>
<td>P/N FT-CHE-SC1</td>
</tr>
<tr>
<td>SC-2 CLEANER</td>
<td>FT-CHE-SC2</td>
</tr>
<tr>
<td>SC-3 CLEANER</td>
<td>FT-CHE-SC3</td>
</tr>
<tr>
<td>BASIC CRUISE KIT C NEWPORT</td>
<td>KIT-BCK-C</td>
</tr>
<tr>
<td>5 MIC FILTER</td>
<td>FT-FTC-5</td>
</tr>
<tr>
<td>20 MIC FILTER</td>
<td>FT-FTC-20</td>
</tr>
<tr>
<td>50 MIC FILTER</td>
<td>FT-FTC-50</td>
</tr>
<tr>
<td>CHARCOAL FILTER</td>
<td>FT-FTC-CC</td>
</tr>
<tr>
<td>6” STRAINER SCREEN</td>
<td>FT-STN-6S</td>
</tr>
<tr>
<td>OIL/WATER FILTER</td>
<td>FT-FTC-OW</td>
</tr>
<tr>
<td>FEED PUMP HEAD</td>
<td>Contact Factory with Model and Voltage</td>
</tr>
<tr>
<td>6” STRAINER O-RING</td>
<td>SO-STN-6SS</td>
</tr>
<tr>
<td>FILTER HOUSING O-RING</td>
<td>SO-FHS-10H</td>
</tr>
<tr>
<td>OFF SHORE KIT</td>
<td>KIT-OFFSH</td>
</tr>
<tr>
<td>20” MEMBRANE</td>
<td>FT-MB-20</td>
</tr>
<tr>
<td>40” MEMBRANE</td>
<td>FT-MB-40</td>
</tr>
</tbody>
</table>
Membrane Pressure Vessel Relocation

Use ONLY Dayco Imperial Nylo-Seal 88-NSR-1/2 tubing for high pressure connections. Pay attention to the direction and flow path of the tubing before disassembly. Make sure that you re-install the tubing in the same manner. Rotate the 90 degree high pressure tube fittings on the Clark pump for ideal tube runs. The high pressure fittings are typically pre-installed at the factory. These fitting seal with an O-ring and require no Teflon tape or pipe dope. Loosen the backing nut rotate the fitting and reseat the backing nut.

Follow the high pressure tube connection instructions on the next page. Connect the tubes to one of the components, secure the tube runs, and then trim and connect to the other component. A 90 degree bend in a tube is better than a 90 degree fitting. A tube, when mounted, should have at least one gentle bend to allow for expansion. Do not connect a tube straight between hard mounted fittings.

When connecting the tubes to their components, be sure to hold the fitting body with a wrench during the final tightening. Of special note are the stainless steel tube fittings on the membrane housing seal on an O-ring and should be seated all the way in. Hold the fitting with a wrench while installing the tube.

The fittings on the Clark pump have an O-ring seal and can be re-oriented by backing out the O-ring Stop nut. Rotate the fitting to align with the tube and tighten the nut just past hand tight. Do Not over tighten!
Spectra High Pressure Tube Fitting Assembly

Use **ONLY** Dayco Imperial Nylo-Seal 88-NSR-1/2 tubing for high pressure connections.

Carefully fit and measure the tubing before cutting with a sharp razor knife or hose cutter and remove any burrs. Minimum tubing bend radius is 6”. Route tubing away from excessive heat sources and secure from vibration and chafe. Have at least one shallow bend in a tube assembly after it is installed.

Refer to figure 1. If a fitting has been disassembled, reassemble as illustrated. The notch on the ferrule must engage the inside of the nut properly for the nut to seat down fully. Once the tube is inserted the ferrule and nut will naturally align.

Refer to figure 2. Insert tube fully into the fitting, it should go in 0.9”。 Tighten the nut finger tight while moving the tube around to prevent binding. One thread should be showing under the nut. Secure the tube so it won’t back out when tightening.

Refer to figure 3. Use 13/16” wrench to hold a straight body fitting or a 3/4” wrench for a 90° body, and a 7/8” wrench for the nut. Hold the body, recheck the tube insertion, then tighten the nut 1 - 1/4 turns. Use the index mark on the nut as a guide. The threads should be completely covered by the nut.

The tube connectors can be disconnected and re-tighten several times. To reconnect, insert the tube and ferrule into the body then hand tighten the nut. Hold the body and tighten the nut with a wrench a little past where resistance is encountered. When correct, the nut should be tightened a little past where it was before disassembly. Always check for leaks.

Figure 1.

- Index mark
- Nut
- Ferrule
- Body
- Straight thread
- 3/8” pipe thread
- 90° pipe thread
- Cut tube square

Figure 2.

- Black high pressure tubing
- Nut finger tight with 1 thread showing

Figure 3.

- Insert tube 0.9” until it stops
- IMPORTANT! Hold fitting body with 13/16” wrench when tightening

Spectra Watermakers Newport Troubleshooting Procedures

<table>
<thead>
<tr>
<th>SYMPTOMS</th>
<th>PROBABLE CAUSE</th>
<th>REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed pump runs constantly, will not turn off</td>
<td>Manual override switches in “on” position</td>
<td>Turn off manual switch on control box</td>
</tr>
</tbody>
</table>
| Feed pump runs with loud noise | - Intake blocked
- Air in system | - Check thru-hull valve
- Check sea strainer for leaks
- Check FWF module for leaks
- Re-prime system (restart) |
| No lights or display, system does not operate | - Remote display not connected
- No power to control box | - Check display cable connections at back of display and at control box
- Check and reset main DC supply breaker
- Check for voltage (12 or 24vDC) at control box power input studs
- Try manual bypass switches; if pumps run, then control or display is defective |
| Pumps run intermittently, cycling on/off | System operating in flush mode (DC models) | System will time out, or manually stop with the Start/Stop button |
| Display activates, but pump will not run | - loose or broken pump wire connection
- bad pump relay
- blown F3 or F5 fuse on MPC
- tanks are full | - Check wiring at terminal block inside MPC
- Test power relay, replace
- Replace fuse (mini automotive type ATM)
- Check tanks—system cannot be started if tanks are full |
| System runs, no product water delivered to water tanks, GHP bar graph shows OK, “Good” LED activated | - diversion valve inoperative wiring fault.
- disconnected or broken product tubing
- diversion valve plunger | - Check wiring at diversion valve and inside control box
- Check product tubing
- Disassemble and clean diversion valve plunger or replace valve (contact factory) |
| System runs, no product water delivered to water tanks, GPH bar graph shows OK, “reject” LED activated | - high salinity of product water, causing system to reject water
- salinity probe out of calibration or defective, bad cable
- chlorine damage to membranes
- pressure relief valve open | - Check for low feed pressure, close pressure relief valve
- Check for leaks at high pressure hoses
- Test product water with handheld tester— if over 500ppm for 1 hour, contact factory

Close Valve
<table>
<thead>
<tr>
<th>SYMPTOMS</th>
<th>PROBABLE CAUSE</th>
<th>REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>“System stalled”</td>
<td>- pressure relief valve open</td>
<td>- Close pressure relief valve</td>
</tr>
<tr>
<td>(“system stalled” may alarm when using the control panel to run system for servicing with the pressure relief valve open—use manual override switch instead)</td>
<td>- intake thru-hull closed</td>
<td>- Check thru-hull</td>
</tr>
<tr>
<td></td>
<td>- airlocked system</td>
<td>- Verify stroke sensor fully inserted in pump</td>
</tr>
<tr>
<td></td>
<td>- no signal from stroke sensor</td>
<td>- Check stroke sensor wiring at control box</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Replace stroke sensor</td>
</tr>
<tr>
<td>“High Pressure”</td>
<td>- blocked brine discharge</td>
<td>- Check brine discharge</td>
</tr>
<tr>
<td></td>
<td>- fouled membrane</td>
<td>- Clean membrane</td>
</tr>
<tr>
<td>“Voltage Too High”</td>
<td>- battery voltage too high or low</td>
<td>- Charge batteries</td>
</tr>
<tr>
<td>“Voltage Too Low”</td>
<td>- loose wires or poor connections</td>
<td>- Check charging voltage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Check power connections</td>
</tr>
<tr>
<td>“Re-starting”</td>
<td>- no signal from stroke sensor at startup. System Air-locked</td>
<td>- See remedy above for “system stalled”</td>
</tr>
<tr>
<td>“Check Fuse” (followed by fuse number)</td>
<td>- blown fuse at circuit board</td>
<td>- Replace fuse (mini automotive type ATM)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Look for cause</td>
</tr>
<tr>
<td>“Service Prefilter”</td>
<td>- clogged filters</td>
<td>- Install new filters</td>
</tr>
<tr>
<td></td>
<td>- loose or defective pressure sensor wires</td>
<td>- Check sensor wiring</td>
</tr>
<tr>
<td>“Ck Sea Strainer”</td>
<td>- clogged strainer</td>
<td>- Clean strainer screen change 50 Mic, Check through-hull and intake hoses</td>
</tr>
<tr>
<td></td>
<td>- dirty 50 Micron prefilter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Seacock closed</td>
<td></td>
</tr>
<tr>
<td>“Salinity High”</td>
<td>- high product water salinity</td>
<td>- Check for low feed pressure</td>
</tr>
<tr>
<td></td>
<td>- chlorine damage to membranes</td>
<td>- Check for leaks at high pressure hoses</td>
</tr>
<tr>
<td></td>
<td>- defective salinity probe or cable, cable disconnected</td>
<td>- Remove and clean probe contacts check calibration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Check cable connections</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Clean membrane</td>
</tr>
</tbody>
</table>
Z-BRANE
OPERATION AND INSTALLATION

The Z-brane is a revolutionary product which incorporates the Zeta-Guard High Voltage Capacitive technology into the membrane pressure vessel. Always active, the Z-Brane creates an environment that is unfriendly to biofilm and bacteria. This allows the system to be shut down or decommissioned for extended periods of time without chemicals or preservatives. The Z-Brane will not prevent freezing so that in cold climates the system must still contain non-Toxic Antifreeze, Propylene Glycol.

The Z-Brane system is integral with the watermaker unit and only requires continuous DC power to be operative. The installation of the Z-Brane only consists of wiring the power supply to two sources. The Z-brane is supplied at the same voltage as the MPC – Control.

Note: There is no reason to open the transformer enclosure. Do not service this unit without disconnecting both power sources! There may be high voltage present.

The red wire is the primary source which can be connected to the AUX1 terminal of the MPC-3000 control. This is internally fused. If you chose another primary power location you must supply a fuse and install it at the source. The second power (White) feed is a backup source that may be connected to any Fused power source. The Black wire is the ground that may be connected to the common ground in the MPC control.

Fuse the secondary power feed at the source. A five amp fuse is ample.

Z-Brane Power Harness

Primary Power Feed
RED
Secondary Power Feed
WHITE
Ground (negative)
BLACK
Operation

During normal operation the Green LED should be on at all times. Power needs to be supplied to the Z-Brane unit at all times. Should the primary power source be disconnected the Z-Brane unit automatically switches to the secondary power source. Secondary power can be checked by pushing the test button and confirming that the Red LED activates. To achieve full effectiveness thoroughly fresh water flush the watermaker several times before leaving the vessel.

DO NOT DISCONNECT OR SPLICE ANY OF THE HIGH VOLTAGE WIRING!

Contact the factory if modifications are required.
This document is a basic outline of MPC-3000 Newport mode operations.

It details what is seen on the LCD display during the various modes of operation.
<table>
<thead>
<tr>
<th>Power On</th>
<th>Power On</th>
<th>OPEN PRESSURE RELIEF VALVE NOW</th>
<th>Active Circuits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>All Off, Aux1 On</td>
<td></td>
</tr>
</tbody>
</table>

Initial Startup Purge Mode

<table>
<thead>
<tr>
<th>Auto Run or Start Stop</th>
<th>STARTING 2:00</th>
<th>PURGING STORAGE SOLUTION 18:30</th>
<th>Pump2, Pvlv, Aux1, Aux2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purging</td>
<td></td>
<td></td>
<td>When 30 seconds remaining, Pump2 Off, Pump1 On</td>
</tr>
</tbody>
</table>

Close pressure relief valve and press Start/Stop

<table>
<thead>
<tr>
<th>Start Stop</th>
<th>RUN HIGH MODE</th>
<th>Displayed for 10 secs</th>
<th>Pump2, Pvlv, Aux1, Aux2, Ster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priming</td>
<td></td>
<td></td>
<td>When 30 seconds remaining, Pump2 Off, Pump1 On</td>
</tr>
</tbody>
</table>

Making Water

<table>
<thead>
<tr>
<th></th>
<th>PURGING PRODUCT 10:00</th>
<th>GPH PRODUCT 4 22</th>
<th>Pump1, Pump2, Dvlv*, Aux1, Aux2, Ster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bypass Purge Mode</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auto Run and Start Stop</th>
<th>PURGE MODE BYPASSED</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Simultaneously</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Manual Run Mode

Press
Start Stop

RUN HIGH MODE
Displayed for 10 secs

STARTING
2:00

GPH PRODUCT
4

Active Circuits
Pump2, Pvlv, Aux1, Aux2, Ster

Priming

When 30 seconds remaining,
Pump2 Off, Pump1 On

Making Water

Pump1, Pump2, Dvlv*, Aux1, Aux2, Ster

*Note on Diversion Valve Operation: During a water making mode, a 60 second salinity check is performed; If salinity is within tolerance (<700ppm) for a continuous 60 seconds, the Diversion valve will open, and the "good" LED will be lit. If salinity is out of tolerance, the Diversion valve will close, and the “reject” LED will be lit. Salinity must drop below tolerance and remain within tolerance for a continuous 60 seconds before Diversion valve will open.

Low Mode

Press
Start Stop
Then press again

RUN HIGH MODE

RUN LOW MODE

STARTING
1:30

GPH PRODUCT
4

Pump2, Pvlv, Aux1, Aux2, Ster

And hold for 5 seconds

When 30 seconds remaining,
Pump2 Off, Pump1 On

Pump1, Dvlv*, Aux1, Aux2, Ster
Auto Run Mode

1. **RUN AUTO MODE**
 - **01:00 HOURS**
 - **Note: pressing Auto Run again will add time in 1 hour increments**

2. **Starting**
 - **2:00**

3. **Making Water**
 - **RUN AUTO MODE**
 - **0:59 HOURS**
 - **Countdown to 0**

4. **Flush**
 - **FRESH WATER**
 - **FLUSH 5:00**
 - **Countdown to 0**

5. **Storage**
 - **FLUSH TIMER**
 - **INTERVAL 119:59**
 - **Countdown to 0**
 - **Perform Flush**
 - **Cycle Repeats**
 - **Note: Pump2 Flush On/Off times (seconds), as well as Storage Time (hours), are programmable via internal software**

Active Circuits
- Pump2, Pvlv, Aux1, Aux2, Ster

When 30 seconds remaining,
- Pump2 Off, Pump1 On

Pump2 Cycles On/Off
- Fvlv, Aux1

Storage Mode

1. **STARTING**
 - **5:30**

2. **Flush**
 - **FRESH WATER**
 - **FLUSH 5:00**

3. **Storage**
 - **FLUSH TIMER**
 - **INTERVAL 119:59**
 - **Countdown to 0, repeat Flush. Cycle repeats.**

Pump2 Cycles On/Off
- Fvlv, Aux1
Auto Fill Mode

Press and hold **Auto Run** for 5 seconds

Active Circuits

Pump2, Fvlv, Aux1, Aux2, Ster

STARTING 1:30

Active Circuits

Pump1, Pump2, Dvlv*, Aux1, Aux2, Ster

Will produce water until Tank1 switch closes

TANK/S FULL

If Tank1 (max) switch closes...

TANK/S FULL

If timer reaches 0, another fresh water flush will be performed

If Tank2 (min) switch opens, Timer will interrupt, and unit will go back into Auto Fill Mode (Production Mode)

Auto Fill Mode

TANK/S FULL

TANK/S FULL

FRESH WATER FLUSH 5:00

Display will toggle “Tank/s Full” to “Flush Timer Interval” every 5 seconds

Countdown to 0

FLUSH TIMER INTERVAL 119:59

Countdown to 0

When 30 seconds remaining, Pump2 Off, Pump1 On

Pump2 Cycles On/Off Fvlv, Aux1
Pressing Alarm/Disp at any time during run cycle will cycle through the following readouts:

GPH PRODUCT
4	Metric	LPH PRODUCT
22

SALINITY
LOW | HIGH

FEED WATER PSI
50	Metric	FEED WATER BAR
150

PREFILTER
GOOD | REPLACE

HOURS TOTAL
000000
If Inlet Pressure > Max Pressure (150psi for Newport Systems)

<table>
<thead>
<tr>
<th>HIGH PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shutdown,</td>
</tr>
<tr>
<td>Audible Alarm</td>
</tr>
<tr>
<td>Alarm LED lit</td>
</tr>
</tbody>
</table>

If Stroke not sensed for 30 seconds:

- **RE-STARTING**
 - 2:00
 - Countdown to 0, retry previous mode

If still no stroke:

- **RE-STARTING**
 - 2:00
 - Countdown to 0, retry previous mode

If still no stroke:

- **SYSTEM STALLED**

If Inlet Pressure > Max Pressure (150psi for Newport Systems)

- **RE-STARTING**
 - 2:00
 - Countdown to 0, retry previous mode

If still no stroke:

- **SYSTEM STALLED**

If no Inlet; 10” of vacuum sensed at vacuum switch:

- **CK SEA STRAINER**
 - Audible Alarm, Alarm LED lit
 - Begin FWF Mode

- **FRESH WATER FLUSH**
 - 5:00
 - Countdown to 0

- **CK SEA STRAINER**
 - Shutdown, Audible Alarm, Alarm LED lit

Fresh Water Flush:

<table>
<thead>
<tr>
<th>FRESH WATER FLUSH 5:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin FWF Mode</td>
</tr>
<tr>
<td>Countdown to 0</td>
</tr>
</tbody>
</table>

Error Occurred:

<table>
<thead>
<tr>
<th>CK SEA STRAINER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audible Alarm,</td>
</tr>
<tr>
<td>Alarm LED lit</td>
</tr>
</tbody>
</table>

If problem corrects itself, Audible alarm off

FWF Mode:

- Pump2 cycles On/Off,
- FVlv, Aux1

Shutdown:

<table>
<thead>
<tr>
<th>CK SEA STRAINER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shutdown,</td>
</tr>
<tr>
<td>Audible Alarm,</td>
</tr>
<tr>
<td>Alarm LED lit</td>
</tr>
</tbody>
</table>
If DC input voltage too low:

VOLTAGE TOO LOW

Begin FWF Mode
To Shutdown

If DC input voltage too high:

VOLTAGE TOO HIGH

Begin FWF Mode
To Shutdown

If salinity probe bad or disconnected:

SALINITY PROBE FAILED

Shutdown

If blown fuse

CHECK FUSE X

Shutdown

(Where ‘x’ represents number of blown fuse (1-5))

If Tank1 or Tank2 switch closed for 2 minutes:

No display, software registers that Tank1 or Tank2 is full.

If Tank1 AND Tank2 switch closed for 2 minutes:

TANK/S FULL

Depending on operating mode, system may at this point begin a fresh water flush, begin storage mode, or shut down. Refer to Operating Modes.
If salinity above tolerance:
 Reject lamp lit, 20 minute internal counter begins

If salinity above tolerance for 20 minutes:

 SALINITY HIGH
 FLUSH 5:00

 Begin FWF Mode
 Audible Alarm
 Alarm LED lit

Shutdown

 SALINITY HIGH

 Aux1
Tank Switch Operation:

Tank Switch Installation

There are two sets of terminals on the MPC-3000 PCB that can be used in four different configurations to automatically start and stop the watermaker or to automatically stop the watermaker when the tank(s) are full without the auto start feature. These terminals are on the green ten pin connector and are labeled “Float Switch 1” and “Float Switch 2.” Float Switch 1 is the tank full switch and Float Switch 2 is the tank empty switch.

If the unit is wired for both Autostart and Autostop, it can be put into AutoFill Mode by pushing and holding the Auto Run switch on the MPC-3000 display. In this mode the watermaker will start whenever the water level drops below the tank empty switch, so that it is open (not conducting electricity). When the tank fills up and both the tank full switch and the tank empty switch have remained closed for two minutes, the watermaker will shut down and flush itself. The water maker will start back up when the water level drops below the tank empty switch and it remains open for 2 minutes. This configuration allows for completely automatic operation. If the watermaker does not need to start up within five days it will automatically do a fresh water flush. AutoFill mode can be ended by pushing the stop button or the Autoflush button. If the watermaker is in Autorun mode it can be put into Autofill mode without stopping it by holding down the Autorun button.

If the owner prefers to install the automatic shutoff feature without the automatic start up option, only the tank full switch is used. A jumper must be placed between the tank empty terminals (Float switch 2) in place of the tank empty switch, because the watermaker will only shut down if both sets of terminals are closed. To use this mode the watermaker must be started up with the Stop/start button or the Autorun button. After the unit starts up, then press and hold the Autorun button until the display reads “Auto Fill Mode”. The watermaker will fill the tank and automatically enter Autoflush mode.

It is possible to use the autofill feature with 2 tanks. A double throw electrical switch must be installed in a convenient location. If only the single tank full switch is installed in each tank connect the wire From the Float Switch 1 terminal “1” to the common on the switch and run separate wires from the switch to each tank switch. The second wires can both be run to the Float Switch 1 terminal 2. If you are using two switches in each tank you will need a double pole double throw switch.